
- -

22

More specificall y , each p1 is a positive integer and satisfies the condition

that there does not exist an integer x , 1 c x -
~
p, such that pl/x is an

Integer. Also , there are no prime numbers less than or equal to n that

are not i:1 the set primes.

In develop ing a solution , the following observations can be made. First ,

2 is the first prime number and the ou]y even prime . All o the r primes are

odd and therefore it is necessary to test only odd numbers as additiona l

prime number cand idates. Second , any number that has a factor has a prime

factor; therefore , it is necessary to divide the current candidate only by the

pr imes already calculated . This means, however , that the primes must be

saved as they are calculated .

In the specifications , primes will be treated as a set, a convenient

choice for high level specification , but implemented as an array. The

necessary properties that the implementation is valid could be stated and
I

proved but is irrelevant to the purposes of this paper.

3.3 Axiomatic Derivation of Primes

In the axiomatic model a program to be derived always starts out in the

form

(F) S (Q)

wher e P g ives the required assumptions on the inpu t and Q the intended

function to be computed by S. Thus , the primes problem can be stated

(3.3.1) (2 <. ul S (primes [[p p < n , p is prime]
~ I.

In order to develop an axiomatic solution to this problem , definition of

the set of primes is needed . In order to distinguish program variables from

- ~~~~~~~
- -

~~
--—--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I

23

tuuct ion definitions , ti me latter will be underlined . Thus , the set 01

prim es may be defined:

(3.3.2) p r i m t  (K) empty it K < 2

pr i rn es (K—i) U [~K ~~pr Ime (K)1J otherwise

(3.3.3) ~~p~ ime (K) (Vp)  (p prIme s (K—i) - K rem p ~ 0)

Using these definitions , the pr imes problem can be restated as:

(1 .3.4) (n > 2} S (primes prime s (n)}.

The program can be refined by decomposing it into a sequence using axiom

A2 in order to compute the even and odd pr imes separately. Then using axiom

Al on the first of the two statements , we arrh’e at the following progr mm:

( 3 . 3 . 5)  {n -> 21

primes (1) := 2; size :~ 1;

ipr imes primes (2)1

Si

(pr imes  pr ime s (n)  I

The program part Si computes only odd primes; furthermore , Sl must

contain a ioop. Following [Dijkstra , 1976) and [G ishen and Noonan , 19781,

the  necessary ioop Invariant  is developed . Note that  for  a given y > 3,

if y is even then ~~~~~~~ (y)  = primes ( y — i ) .  Since n may be e i the r  even

or odd , the following ioop invar iant  is used :

(primes primes (y—l), odd (y), y n+2}.

Thus , the loop (Si)  can be f u r t h e r  r e f i ned  using axioms A2 , Al , and A3 to

arrive at:

(3.3.6) (pr imes = primes ( 2 ) 1

y := 3;



_____________
24

(prime s — pLirnes (y—l), odd (y), y mm f 2 1

w h i l e  y n do

52

Ip r imes — ~r i m & ~s (n)  I

Note tha t proving th~ eon cc t ness o t thi s elaboration requIres the

proot ot the t o~ L owing  l emmas:

I .  pnime~ — p~~ime8 (2) - (prImc ~ ~nimes (3—1), odd (3),

I n + 2)

The pron is  obv I a i i s  si ne  e I t Is known that n 2.

2. (prIm es — ~~~ mes ( y — I ) ,  odd (y ) , y - n 4- 2 , y n)

- prime s pr imes ( n ) .

Two cases ar ise . i i  n is even , th en y — n + 1 and

primes — p!Imes ((a  + 1) — 1) — prim e s (n) . I t  n is odd ,

t h e n y — n + 2 a u d

primes — 2~~ mes ( ( n  + 2) — 1)

— ~~~~~~~~~~ (a + I)

— primes (n) since n + 1 is even and

hence , not prime .

In a s i m i l a r fash ion , ti me code shown below is produced proceeding

bac kward through S2:

(3. 3 .7 )  Ip r lm e s — p~~j~ m s ( y — I ) ,  odd ( y ) ,  y —

isprtme : true ; j  :— 2

( p r i m e s — primes (y—J), odd (y), v ml

isprime — (YK) (l-K- j • y rem prime s (K) # 0)

- .—---



~~~~ — ----~~—~~~
- - - .

~~~~~~
- - - - -

— ~~~-~~~~~- -

25

II!. LIC i ~ SIZE and ispr inie titi

I apr  nat- : (y  i eta p r i m es ( j  ) ) ~ 0)

I 1

I pt I tnt-s — p m - I me s ( y —  1 ‘t , odd (v  ) • v — n • I sp r I nit- —

t ine ( y )  I

i i  I spi- jine t h e n

-t I .:c :~~- size 1

pi ’ t uics (size) :— y

Ii

lprimes p n i n m t ’s (y +l)  p r im e s (‘) , odd ( y ) ,  y — ml

y :— y + .~

(primes — p r t t n e s  (y—l) , odd (y )  , y a + 2 1

The I inn 1 p r o g r a m  with I t s  I n t e r m e d i a t e  assert tons as documeniat Ion Is shown

tim FIgure 3.3.

I .-) l - m i n c t  iona l Derivation of Primes

In  time func  t tona l approach , time problem mu st  be spec It ied as a tun e  t ion

I t  om a set of inp u t s  to  a set ot outputs. As bet ore , t i m i  s can be s t a ted :

( L 4 . I )  p r i m e s — [I p I P U, P is prime 11

As w i  t im the p rev ious  so I u t  ion , t he even and odd p r i mes a re con m pmi t  ed

~ i-p.i r at  e I v and t ime prime number eand hint es ate divid ed oni y by p m I nto

nmimbe ra . Under t. hese conditions , t 1w I t in e t loan I spec I l l  cem t ions may  Ito

rt-wr It ten as:

(1.4.2) prIme s — [1 2 11 U odd~ rime s (3 , a)

us tag time - fund ions:

~



— --e -a~~~~ -ç~~ - -, 
-~~~~~~~

- 26

FIGURE 3.3

AXIOMATIC SOLUTION OF PRIMES PROBLEM

I a 2 1

primes (1) :— 2 ; size : I

(primes — primes ( 2 ) )

y : 3

(prime s primes (y—l ), odd (y), y n + 2 1

while y ‘- a do

isprlme :— true ; j 2

(primes primes (y—i), odd (y) , y — a

isprime = (VK) (1 — K -. j  y rem prime s (K) $ 0 ) 1

while j ‘- size and isprime do

isprime : (y rem primes (j) ~ 0)

:— j + I

od

(primes — primes (y — 1), odd (y), y ‘- n ,

isprime — isprime (y) 1

if isprime then

size :— size + 1.

pr inmes (size) :— y

fi

(prime s p~imes (y) - primes ( y  + 1), odd (y), y —

Y :— Y + 2

(primes — primes (y — 1), odd (y), y n + 2)

od

(prime s — primes (n)}



27

oddprim es (t ,u) — [(L j~p~ ime ~m ’ )JJ U oddprimes (f+2,u)

It 2. - a

= e~pty i f  i - u

Isprime (x) (V p) (p oddprinmes (3 , p — 1)

x rem p~~~O)

The functional specification (3.4.2) can be decomposed into two functions ,

the first of which initializes the basic data and the second defines time

iteration tha t does the bulk of the calculation .

(3.4.3) [ primes :— [[211 U oddprimes (3, a1
)

primes (1) := 2 ; size :— I

y :~ 3

[primes := primes
1 

U oddprimes (y. , n
1~

fl

The implicit loop In computing odd primes can now be made explicit:

(3.4.4) [primes :~ primes111 U oddprimes (y 1 , a1
)

while y ~~n do

[primes := primes
1 ~ 

~~in 
isprime (y~~)]J

y : y~ + 2 1

od

As with all expansions , time associated lemmas given in Table 3.2 must be

proven . Since this refinement is not obvious, the expansion is verified .

Since the refinement is a loop, three lemmas must be proved .

1. Does the loop terminate? Yes , since y is incremented by 2

for each iteration and is bounded above .

2. Whenever the loop test is true (y -
~ a), Is the loop body

composed with the Intended function of the loop equivalent to

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ i___ - ~~~
S_ _

~~ —I - ‘- -

~~ - - - - ~~~~~ ~——--- - - .

28

the intended function of the loop. This is demonstrated using

a trace table.

primes

initially Primes1~

loop body primes1
U [[y ~ Ispr ime (~~~) J) + 2

loop function Primes~ U [(y
1 I isprime (y1)]l

U oddprimes
~~

+ 2, a1) ——

— ~rime s
1~

U oddprimea (y 1, n1
)

Since the final value for primes Is the same as the intended tunction

of (3.4.4), this case is proved.

3. Whenever y > a, is the intended function of the loop an

identity? Yes, since y a, the set oddprimes ~~~~ a) is empty.

Thus,

primes — primes
~

and this case is proved .

Although the correctness of each successive expansion is not verified , it

should be clear that it Is both possible and often helpful to do so.

The solution process 18 continued by expanding the loop body given in

(3.4.4).

(3.4.5) (prIme s :— Pr ime 81~ U t
~~in

Ispriome (y
1)fl

y : y~ + 2)

(ispr ime : isprime (y
1

))

if isprime then

size :— size + 1

primes (size) :— y

_________________ ____

-~~~~~~~~~ --
_ _ _ _ _ _ _ _ _ _ _ -

29

fi ; - -

y :— y + 2

Tim e f inal expansion Is the loop necessary to calcu!ate Isprime.

(3.4.6) [isprlmne : isprime (y
1

))

isprime := true ; j : 2

while j -
~ size and i spr ime do

isprime :— (y ream primes (j) ~ 0)

j :— j + 1

od

The complete program with its intermedialt- functions as documnentat ion

is given in Figure 3.4.

30

FIGURE 3.4

FUNCTIO NAL SOLUTION OF PRIMES PROBLEM

[primes : [12fl U oddpr imes (3, n)]

primes (1) :~ 2 ; size : — 1

y : — 3;

[primes :— Primes1~ (I oddprimes
~~~ 

, n 1 ) J

while y~~~~n do

[primes := Primfles1~ u 
~~
‘in isprime

y :~ y1 + 2]

[Isprime : Isprime (y
r

) ]

Isprime := true ; J : 2

while j  ‘ size and isprime do

isp r ime :— (y rent primes ( j)

~~O)

j  :—  j  + 1

if isprime then

size :— size + 1 ;

primes (size) :— y

y :— y + 2

od

L.



-- — ~~~~~~ rw .._. —..--- - _
~~~~~~~~

_
~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - — _ ‘vrw ~ -—r.- ~~-~~~~~-~-- .~~~~ - .- ,— -~~—w w -

31

4.  COMPARISON BETWEEN THE TWO MODELS

In what  t o i l o w s , sonic of the similarities and differences between the

t wo models and t he i r  associated correctness and derivation approaches are

discussed .

4 . 1 S i m i l a r i t i e s

Formal Models of Ind iv idua l  P rogram Cons t ruc ts  — !~etIi approaches are

based upon tormal, tractable mathema t i ca l  models fo r  s p e c i f i c  sets of p rog ra m

const ruc ts  In I so la t ion  (not as opera t iona l  models of the i n t er r e l at i on s h i ps

of program ~-otms tru t-ts at runtime) . The models for t h e Individua l i-ous t  muc t s

give an Indication of t he  comp l e x i ty  of t ime semantics of time c o n s t r u c t s  and

thus yield a good mno l ivat Ion for t ime choice of a set of p rog ra mming  l anguage

const ruc t s  for  use in w r i t i n g  provably  correct  programs . They bo th  deal w i t h

pa r t  lal c o r r e c t n e ss  onl y; proof of termination is a separate issue and

Identical tecinmiques can be used in both models .

Ste  wi se  er i v a t l on  and Correctness - Rules f o r  d e r i v a t i o n  and

co r r ec tne s s  are  based on t ime ap p l i c a t i o n  of the particular ~on st  rudis as they

are decomposed in time deveio pnm ~m nt  p rocess and composed In time ahst racL ion

process. The techniques are app l icabl e in a stepwise manner , at various

levels in the  correctness  and development process , dealing wh im o n l y  small

segments of code , expanding subspecitications in a step by step manner . in

this way , they also make exc e l l en t doc umen ta tion techn iques , each subspecili—

cat ion be ing  u s e f u l  as a h igh  level comment about the code expanded b e low

it.

invent ion  — As me t hodolog ies  fo r  p r o v i n g  cor rec tness , both  approaches

require some lnvemm t iomm in the creation of the loop Invariant and the intended

- - 
~T1U)W. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — -


p.— —- --- --v
-~~~

-- : - -
~~

- - - - - - - -

32

ioop func t ion , if timese are not given , there is no practical way of

generating them which is guaranteed to succeed in a reasonable amount 01

time . A great deal of work has been done on heuristics for finding loop

invariants (Wegbrelt , 1974]. Some results have recently been published in

generating intended loop functions [SlikIe , 1977].

4.2 Differences

Underly ing Mathematics — The underly ing mathematics of m~.ach of time

models is different. The axiomatic approach uses the predicate calculus

while the functional approach uses the concepts of function composition

and equivalence. Consider the rules for correctness given in Section 2.

One set of rules uses logical consequence ama . the logical operators of

the predicate calculus, while the other uses function composition

(decomposition for derivation) and function equivalence.

Statement of the Specification — The functional approach states time

specifications and subspecifications as functions from the input value space

to the output value space. It is a mathematical function in the strict

sense. The axiomatic approach organizes the specifications and subspeeif I—

cations into Boolean functions represented by assertions on program variables

where the input assertion is a set of status relations among the input

program variables and the output assertion yields true or false depending

upon whether the output variables satisfy the appropriate intended function .

In illustration, consider the following simple program :

I :— 1 ;

I : — I + 1

The format for the axiomatic and functional approaches are given be low:

—_--- — — •• — —---—-—-—-- — -~--~~~~ ~~ - ~~~~~ ~~ ‘ -

33

true } [-1 = 2]

I :— 1 [I = I]

(I = 1) I : 1

I : = I + l [1 = 1 +1]
in

(I = 2} I := I + 1

In the axiomatic approach, each assertion shows what is true about the

state of the variables at the particular point in the program where the

assertion appears. The assertion is given in terms of a relationship between

the variables involved, e.g., {I = 1). In the functional approach, the

function defines the effect a particular set of statements has with respect

to its set of input and output values, e.g., the statement I : I + 1 is

defined by the function [I — 1
in

+ 1] (shorthand for f = [F
~~
1in’ ~~ ~

I I~ + 1]]) and this is true independent of where that statement is

imbedded in the program. It defines the ef fec t of that statement in a

variable—free way , i.e., I represents the output value space of the function

and ‘in
and 1 represent the input value space.

The variable free aspect of the functional model versus the variable

dependent aspect of the axiomatic model is demonstrated by their model of the

assignment statement. Consider the axiomatic rule for assignment given in

Figure 2.2. In the assignment x := f, if f is any expression not involving

the program variable x then there can be no way for the post assertion Q

to capture the old value of x. Thus, in the multiplication example, in

order to assert that Z A * B, neither of the values of the input variables

A or B can be destroyed . Since the algorithm used destroys the value of B,

a copy of this value (Y) must be made in order to prove correctness. This is

so the relationship can be written in an invariant way, even though the value

-i

34

of Y is changing dynamically. The output assertion requires the variable B

be unchanged as a reference point.

In contrast , the functional model handles assignment “naturally” since

a function, like an assignment , is a mapping of input values to output

values. The functional specification is not in terms of the variables at

all but the values of the variables; i.e., Z and Zin represent different

value sets of the same program variable , at point of input to the program

segment specified and at point of exit. The function gives the relationship

between the two value sets.

Scope of Specification — A functional specification defines the state

of affairs of only the program part for which it Is the intended function .

For example, the function ~ ~ ‘in
+ 1 1 describes only the behavior of the

statement I : I + 1. However, in the axiomatic model, the assertion

II = 21 depends not only on the statement I := I + 1 but also on the

previous history of I.

Any change in a program not affecting a particular program segment

implies that the functional specification for the segment need not be changed

and no new proof of functional correctness is required for that segment. In

addition, a different implementation of a functional specification can be

substituted without changing any proofs of correctness in the remainder of

the program.

This cannot be done in the axiomatic model . An assertion about a

variable depends on the history of the use of that variable and on its inter-

dependence on other variables. In addition, assertions contain global

information about nonlocally affected variables. Thus changes in a program

r— — -
—--—~~~~~~ -

35

affecting a particular variable are not necessarily Independent of the

remainder of the program and will usually require new procfs of all

assertions containing that variable .

Bottom Up Correctness — An added effect of this difference is that

given a program without any functional specifications, the Intended function

for any prime program can be defined depending only on the subhierarchy of

the prime program, i.e., functional correctness can be approached bottom up.

Suppose the functional correctness of the program in Figure 4.1 is to be

proved bottom up. The functional equivalent of the loop body is

1
1n + 1

and the proof is trivial. The functional equivalent of the loop in

[I := max (Ii . Ni
)

or

[I : N if I < N
in In in

: I if l > N 1.in i n — in

The proof that the loop is equivalent to the above function requires proving

that the loop body is equivalent to its function.

Now consider the case for the axiomatic method ; given

(P1 I := I -4- 1 (QI

P and Q must be found. Given Q, P can b.~ found from Q via the assignment

axiom (Al). Unfortunately, there is no way to determine Q; in a sense

Q must contain a great deal of historical information about the use of the

- .4_ _~.•_.. 4- — - - 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4-”~ - -

— —---~~~~ ----—~~~~~~~~~~ —- --- - - - _ _~~~~—~~_~~~~--.-~~~~~

3b

FIGURE 4.1

PROCRAII TO COMPUTE I = N

[N O }

I : 0

[I ‘- N }

while I N do

I := 1 + 1

od

(I = NT

37

variable I as well as ILs relationship to the nonlocally referenced N.

Suppose , however , the straightforward approach adopted for the functional

method was tricd:

itrue~ I : 1 + 1 (I I + 11.In

However , given time invariant for the loop IL < N}, a proof of corr ectness

req ui res show ing

[P A B~ I := I + I (lfl

or

(I < N , 1 — N} I := I + 1 {I c N!.

Thus , without considering the loop as a whole , there is no prac tical way of

de term ining the corre ct loop body post—condition , that is, there is no

practical way to assure that the choice of the post—condition Is sufficiently

strong to be of value in the proof of correctness of the loop body.

In the functional approach , any such bottom—up process is guaranteed

to be relevant to the larger construct. In fact , in the program in Figur e

4.1 , given the program as a whole , the Intended function of the loop is

actually

F I — N i f l N 1.in in — in

Note that this is weaker than the one found in the bottom—up process. This

is necessarily so, since the top—down process can consider only the relevant

Input domain (N - 0) instead of the entire input domain (N an integer).

However, it should be noted tha t even in the f unc tional model , top—down

proofs are easier. Because the intended function is more specific than the

4 - - -- -- -.- -~~ 4-—-- ~~~~~~-- - -- - -. - -74~~~—~~-—-.-~~~~~~~-

18

I mi ne - t I omm .m I equ I vim I emm t o t the program , time a I gebra It’ man I pu tat tons are great I y

simp i If ted tim prov lug time mwee ’ssary fuimct tona l equl valences. For exaum p i e ,

consider t 1w pmoi ’ tern of I h i d tu g t im e int ended I unction of a binary search

p 1- t i g m a u m ii von do im ot know In’ tn p u t array is ordered .

4 . 4 1 imie t i e I at I nimshm ip

l ime e is aim t n t c L e s t I ng coimnec t ton bet ween t he two mode I a. Time tnt ended

ul m e - I. Ion .‘I a I oop may 1w eas 11 y converted to a loop i n v a r i a n t ; imamne I y

I (x) — (x t i m) is t ime m o p invariant I Mt I I s , 1915 1 . In t ime mmii t 1 p 1 teat loim

exam~’Ie , f ~~~~~ I uiwt t onal spot’ [[teat toim for the 100)) 1 s ‘1. : Z in -+ Al U ~~ 11 1 mm

Imm is t he’ loop Invariant is

I (x~ — I (xlii)

Z f A ‘~ B — Z in4 Am * Bin

I Zin 4- At.n * Bin — A * B

— Z I n I- A * (B i n — B), s ince A — Aiim

A * (B u m — 8), sIn ce’ liii — 1) I ron tIm e thU hml assem- t lou

and the u ’onmposl t Ion ol I he’

st8teniemmt s i)recedtimg f lue

1 oop

lii t Im e ’ pm ogrnm in Fl gure 2. 3 , the vat-t able B plays time role ol 1% in antI I he

v a r i ab l e Y p l a y s the role nt 8.

5. CONCI.US ION

It simon Id be clear from the imrev ions dl scuss Ion I fiat I’al Ii flitlete ’ i s v ie’ I ~l

a methodo logy of program de r I vat t on and c - u i ted imes a . rim .’ a ppm o.u. - lies Im a ye a

great deal In common hut, they 810 dii Iem’ent ; time axloimmt he app i oai - lm empl m .m u I ’ .’:-

:~~ ~~: -
~~~~~~~~

-

39

time relations between the variables and the funct ional  approach emp has izes

the independent variable—free functions performed by the various program

subpieces.

It is not clear which approach is more e f f ective in an opera tiona l

environment. It  may, in fact depend upon the particular environment , and

the problems that arise . Enough is still not known about the kinds of errors

designers and programmers make in different environments and therefore whether

a variable—free or variable—dependent approach is best. One possibility is

for the developer to be aware of both and use both in the development d

programs. Certainly, one could be used in formally deriving the progranu •umd

time other as a commenting aid ; e.g., use the func tional approaci m in t im e

development to aid in time partitioning and modularization of the iimdepeimdent

program parts and use assertions as comments to aid the programme r in under—

standing the rela tionships between the variables. In either case the models

appear to complement each other in the insight they provide to time developer.

1

~~— 

- ~
j4- -

-— ~~~~~~~~~~~ -— 4  ~~~~~~~ -



- - - . - -  — — - —~~~~~~~ -~~~~~~~

40

REFERENCES

I. C. A. R. Hoare. An axiomatic basis for computer prngtsmrnlimg .

CACM , 12 (October 1969), pp. 576—5814.

2. H. D. Mills. The new math of computer progt -arnmiumg. t l teCM , 18

(January 1975), pp.

3. B. Wegb re i t .  The synthes i s  of ioop p red ica tes .  CACM , 17 ( F eb r u a r y

1974), pp. 102—112.

4. E. W. Dijkstra . A4Q!~~~i i In e of Pro~ ri1tmmnm I~~~. Prentice—Hall (197b) .

5. J. S. Gishen and R. E. Noonan . Toward a methodology for t ime forma l

derivation of programs. IEEE Transactions on Software ~~~Iimeeriu ~

(to appear).

6. A. Blikle. An analytic approach to time verification ot iteratIve

programs. Information Processing 77, (1977), pp. 285—290.

7. H. D. Mills. Mathematical foundations for structured programming .

IBM Federal Systems Division , FSC 72—6012 (1972).



— - 4 -

SECur V CLAS~I~ I( A L ION OF TH IS PAGE (Wh.n l i s t , .  !~u uiere l 
____________ __________________________________________

REA L )  INSTRUCTIONS
~~~~ ~~~~ PORT DOCUMENTATION PAGE 

_______ vvom* coKu ’i u•:-rusc. FORM

AF~SB~ R .7 8 — ~ 7 3iJ / 11.
9OVT ‘CCESSION NO. 3. R E c u p u E N r s C A T A L O G N U M B E R

4- T i T LE (and SubtHl.) 5. TYP Dr~~~~~~ £
~~~~ COVE RED

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -4 .-—- - 
~~~~~~~~~~~~~~~~~~~~~~ _.

~ - -.- - --- - .(~ \ ~~~ OMPARISON OF THE~~XIOMAT IC A~~

J

~~~~~~~ rim ~~~~~~~
ODELS O}~~STRUCTURED ~ROGRAMM INC. 

~~. PERrORMI _______
.....4 PI~TCTI ONAL 1~ 

______ 

~~~~ . Tech R
7. AUTHOR (s) 8. CONTRACT OR G~~~~

”r~~~~I~~ER(.)

~ iTt~~~~Ori./Basii~~~~~ Robert E./Noonanj (
~

R 7 7 ~ 3l8~~(

9. PERFORMING ORGANIZATION N A M E A N D ADDRESS tO . P R OGRAM EL E M E N T. P JECT . TASK

_ _ _ _ ~~~~~~~~~~~~~~~

AR EA 4 W9?*.~lNIT ERSUniversity of Maryland
(~2~c)Department of Computer Science

College Park , MD 20742 61102F L?~fr~ —

II. CONTROLL iN~~ OFF ICE N A M E A N D ADDRESSAir Force Office of Scientific ResearchfN1(~~f Feb 78 /
Boil ing AFB , DC 2 0332 ‘

~~~~ — 
‘
~~~

•

~~~~~~13. N U M B E R  9P t’AGE

40 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /
1 4. MONITORING AGENCY N A M E  & ADORESS (iI differen t from Controllina Office) IS. SECURITY ~~~~~~~ (of this raplrt) -

UNCLASSIFIED

ISa. OECLASS IF ICATION/D OWNGRAD ING
SCHEDULE

16. D I S T R I BU T I O N  S T A T E M E N T  (of thu Report)
Approved for public rclease~ distribution unlimited .

17. DISTR i B u T ION S T A T E M E N T  (~ f th, abstract ente red In Block 20. if different from Report)

16 S U P P L E M E N T A R Y  NOTES

19. K E Y  W O R D S  (Continue on reverse aide II n.c.a.ary and identIfy by block number)

-‘3
/ .USTRAC T (ContI~~ e On revere, aid. If necessary and Identify by block number)

Tnis paper discusses the axiomatic and funct iona l models of the semantics
of structured programming . The models are presented together with their
respective methodologies for proving program correctness and for deriving
correct programs. Examples using these methodologies are given. Finally ,
the models are compared and contrasted

\

FORM 1473DD I J A N  73 ~ 
EDITION OF I Nov 65 I~ OBSOLETE 

— 
UNCLASSIF]10

~~~ SECURITY CLA SS iFI CAi’ I1.~? T’l iS PAGE (iThpn 0.,. Ent.i.d)
/

- - - -~~~~~~~~~~~~~~~~~~~~~~ -‘~~~- -~ -- 4—

